Recitation 4. October 1

Focus: bases, and the four fundamental subspaces.

A basis of a vector space V is a set of vectors v_{1}, \ldots, v_{n} that I) span and II) are linearly independent. The number of vectors in a basis (which is always the same) is the dimension of the vector space.

Let A be an $m \times n$ matrix. The four fundamental subspaces of A are: I) the nullspace $N(A) \subset \mathbb{R}^{n}$, II) the column space $C(A) \subset \mathbb{R}^{m}$, III) the row space $C\left(A^{T}\right) \subset \mathbb{R}^{n}$, and IV) the left nullspace $N\left(A^{T}\right) \subset \mathbb{R}^{m}$.

1. Determine if each of the following is a basis for the given vector space. If it is not, add or remove vectors to make it one:
(a) The set of vectors $\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{c}-1 \\ 1 \\ 1\end{array}\right]$ in \mathbb{R}^{3}.
(b) The set of vectors $\left[\begin{array}{l}2 \\ 4 \\ 0 \\ 3\end{array}\right],\left[\begin{array}{c}1 \\ -1 \\ 2 \\ 0\end{array}\right],\left[\begin{array}{l}6 \\ 0 \\ 0 \\ 0\end{array}\right]$ in \mathbb{R}^{4}
(c) The set of vectors $\left[\begin{array}{c}-3 \\ 1 \\ 2\end{array}\right],\left[\begin{array}{c}1 \\ -3 \\ 6\end{array}\right],\left[\begin{array}{l}2 \\ 4 \\ 5\end{array}\right],\left[\begin{array}{l}1 \\ 2 \\ 2\end{array}\right]$ in \mathbb{R}^{3}.

Solution:

2. Recall that for two vector subspaces V, W in \mathbb{R}^{n}, their sum is $V+W=\{v+w \mid v \in V$ and $w \in W\}$, and their intersection is $V \cap W=\{v \mid v$ is in both $V, W\}$. Let

$$
V=\operatorname{Span}\left\{\left[\begin{array}{c}
-1 \\
0 \\
1 \\
4
\end{array}\right],\left[\begin{array}{c}
2 \\
6 \\
0 \\
-3
\end{array}\right],\left[\begin{array}{c}
1 \\
12 \\
2 \\
0
\end{array}\right]\right\} \quad W=\operatorname{Span}\left\{\left[\begin{array}{c}
0 \\
-3 \\
1 \\
-3
\end{array}\right],\left[\begin{array}{c}
-1 \\
6 \\
3 \\
9
\end{array}\right]\right\} .
$$

Find a basis for $V+W$ and $V \cap W$.

Solution:

3. Use Gauss-Jordan elimination find a basis of each of the four fundamental subspaces of

$$
A=\left[\begin{array}{cccc}
1 & 3 & -2 & 0 \\
2 & -1 & 0 & 5 \\
-3 & 2 & -2 & 1
\end{array}\right]
$$

What is the dimension of each?

Solution:

4. Let B be a square matrix such that $B^{T}=B^{-1}$. Show that the columns of B are (pairwise) orthogonal and have length 1. A matrix with this property is said to be orthogonal.

Solution:

